Chapter 3: Industrial Feedback
1. Industrial Feedback

We have identified 39 preliminary tools (Table VI) on the basis of literature review (Chapter 1). The further tools evaluation is performed (Section 4) by using various characteristics (Section 4.2) in order to select most appropriate tools for our project. Consequently, 28 tools have been identified (Section 4.3). At this stage, we know about the tools (Section 4) those are frequently used in research practices. However, it is also important to investigate the current industrial practices regarding MBSE tools. Therefore, in this chapter, we present the utilization of identified MBSE tools in different industries as given in the Table XII

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Tool Name</th>
<th>Resources</th>
<th>Industrial Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magic Draw</td>
<td>[148][149]</td>
<td>NASA, Toyota, Sony, Google, IBM, Siemens, Microsoft, British Petroleum, Schneider Electric, Mitsubishi Eclectic, Sony, Honeywell, Samsung, LG, ABB, Motorola etc (please see resources for further details)</td>
</tr>
<tr>
<td>2</td>
<td>Papyrus</td>
<td>[150]</td>
<td>OBEO, CEA list, Ericsson, THALES, ATOS, Ortol technologies etc (please see resources for further details)</td>
</tr>
<tr>
<td>3</td>
<td>Artisan Studio</td>
<td>[151][152][153]</td>
<td>Alstom Transport, CIRA, PSA etc (please see resources for further details)</td>
</tr>
<tr>
<td>4</td>
<td>ATL</td>
<td>[154]</td>
<td>OBEO</td>
</tr>
<tr>
<td>5</td>
<td>MDWorkbench</td>
<td>[155]</td>
<td>IKV, BTC-ES, ITQBase, IBM, Tasktop, CloudOne</td>
</tr>
<tr>
<td>6</td>
<td>QVTO</td>
<td>[156]</td>
<td>No Magic, Orange Lab, Borland</td>
</tr>
<tr>
<td>7</td>
<td>Epsilon</td>
<td>[157]</td>
<td>NASA, IBM, SIEMENS, ROYCE, BAE Systems, etc</td>
</tr>
<tr>
<td>8</td>
<td>Henshin</td>
<td>[158]</td>
<td>SAP</td>
</tr>
<tr>
<td>9</td>
<td>Viatra2</td>
<td></td>
<td>DECOS, DIANA, OptXware</td>
</tr>
<tr>
<td>10</td>
<td>PRISM</td>
<td>[159]</td>
<td>Microsoft, QinetiQ, DARPA</td>
</tr>
<tr>
<td>12</td>
<td>ActiveHDL</td>
<td>[161]</td>
<td>NEC, Sigasi, Synopsys, Mathworks, Xilinx</td>
</tr>
</tbody>
</table>
The significant MBSE tools and their utilization in different industries / research organizations are presented in Table XII. The internet resources of this information are also given against each tool. There are various tools for which any customers / users / client’s related information is not available. For example, Xpand, Acceleo, Modelio editor, Zot, QEMU etc do not make available any information which is helpful to identify any particular industries or research organizations those are using these tools. The primary reason is that these tools are freely available to use so it is not possible to keep the record of users. On the other hand, some proprietary tools do not public any customer / user related information. For example, no customers / users related information is available for IBM Rhapsody despite the fact that it is frequently used in industries and research groups.
References


[14] Michal Doligalski and Marian Adamski: UML state machine implementation in FPGA devices by means of dual model and Verilog Translation UML diagrams into Verilog, 11th International Conference on Industrial Informatics (INDIN) 2013, Pages 177-184, DOI: 10.1109/INDIN.2013.6622878


[19] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard and Jean-Philippe Diguet: A co-design approach for embedded system modeling and code generation with UML and MARTE, Conference and Exhibition Design Automation and Test in Europe (DATE) 2009, Pages 226-231, DOI: 10.1109/DATE.2009.5090662


[31] Ling Yin, Jing Liu, Zuohua Ding; Mallet, F., de Simone, R.: Schedulability Analysis with CCSL Specifications, 20th Asia-Pacific Software Engineering Conference (APSEC) 2013, Pages 414-421 DOI: 10.1109/APSEC.2013.62

DOI: 10.1109/RSP.2012.6380695


[34] Milena Rota Sena Marques, Eliane Siegert and Lisane Brisolara: Integrating UML, MARTE and SysML to improve requirements specification and traceability in the embedded domain, 12th IEEE International Conference on Industrial Informatics (INDIN) 2014, Pages 176-181 DOI: 10.1109/INDIN.2014.6945504


[38] Jong-Won Ko, Kyung-Yong Chung and Jung-Soo Han: Model transformation verification using similarity and graph comparison algorithm, Multimedia tools and applications, SPRINGER 2013, DOI: 10.1007/s11042-013-1581-y


[40] Peter Feher and Laszlo Lengyel: The challenges of a model transformation language, IEEE 19th International Conference and Workshops on Engineering of Computer Based Systems (ECBS) 2012, Pages 324-329 DOI: 10.1109/ecbs.2012.6487443


[43] Anderson Ledo, Franklin Ramalho and Nata Melo: MetaTT – A Metamodel Based Approach for Writing Textual Transformations, 6th Brazilian Symposium on Software Components Architectures and Reuse (SBCARS) 2012, Pages 61-70 DOI: 10.1109/SBCARS.2012.21


[47] Tuomas Launiainen, Keijo Heljanko and Tommi Junttila: Efficient Model Checking of PSL Safety Properties, 10th International Conference on Application of Concurrency to System Design (ACSD) 2010, Pages 95-104 DOI: 10.1109/ACSD.2010.27


[54] Bijan Alizadeh and Payman Behnam: Formal equivalence verification and debugging techniques with auto-correction mechanism for RTL designs, Microprocessors and Microsystems 2013, Pages 1108-1121


[57] Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand and Bran Selic: Extending SysML with AADL Concepts for Comprehensive System Architecture Modeling, LNCS SPRINGER 2011, Volume 6698, Pages 236-252 DOI: 10.1007/978-3-642-21470-7_17


[59] Xiaopu Huang, Qingqing Sun, Jiangwei Li, Minxue Pan and Tian Zhang: An MDE-Based Approach to the Verification of SysML State Machine Diagram, Proceedings of the Fourth Asia-Pacific Symposium on Internetware Software, Article 9, ACM 2012, DOI: 10.1145/2430475.2430484


[95] “MDWorkbench platform,” www.mdworkbench.com, from SODIUS.


http://www.mentor.com/products/fv/questa/


