
SRS for MODEVES Project, NSTIP, Saudi Arabia

Software Requirement Specification
(SRS)

For the Project

MOdel-based DEsign & Verification for Safety-Critical

Embedded Systems

(MODEVES)

Version: 2.0.0.0

SRS for MODEVES Project, NSTIP, Saudi Arabia

Date: 31th May, 2015

To Whom It May Concern

This document contains Software Requirement Specifications for the Project “MOdel-
based DEsign & Verification for Safety-Critical Embedded Systems (MODEVES)”. It is
certified that we have read this Software Requirement Specification Document and fully
agreed upon its contents and scope. We also agree that the specifications stated in this
report are inclusive to proceed further for the research, development and
implementation of project.

Presented By: Muhammad Waseem Anwar Signatures

Name of
Presenter:

Muhammad Waseem Anwar

Presented to: Dr. Rashid

Approved By:

Approval Date:

SRS for MODEVES Project, NSTIP, Saudi Arabia

Document History and Distribution

1. Revision History

Revision # Revision Date Description of Change Author

1.0.0.0 04-12-2014 NA M. Waseem Anwar

waseemanwar@hotmail.com

2.0.0.0 31st May 2015 Ambiguities have

been removed from

functional and

nonfunctional

requirements.

M. Waseem Anwar

waseemanwar@hotmail.com

2. Distribution

Recipient Name Recipient Organization Distribution Method

Dr. Rashid NA Postal mail

mailto:waseemanwar@hotmail.com
mailto:waseemanwar@hotmail.com

SRS for MODEVES Project, NSTIP, Saudi Arabia

Table of Contents
Terminologies ... 5

1 Introduction ... 9

1.1 Purpose ... 9

1.2 Scope .. 9

1.3 Intended Audience and Reading Suggestions .. 10

2 General Description ... 10

2.1 Product perspective .. 13

2.2 Product functions.. 15

2.3 General constraints ... 15

2.4 Assumptions and Dependency ... 16

3 Functional Requirements ... 16

3.1 Modeling Environment .. 16

3.2 Model Transformation.. 21

3.3 Code Generator .. 23

3.4 Simulator .. 26

3.5 MODEVES Framework ... 27

4 Non-Functional Requirements ... 30

4.1 Performance ... 30

4.2 Reliability ... 30

4.3 Availability ... 30

4.4 Security... 30

4.5 Maintainability ... 30

4.6 Portability ... 30

References ... 31

SRS for MODEVES Project, NSTIP, Saudi Arabia

Terminologies

In this section, the common terms used in this document have been described. This will

significantly reduce the ambiguities that may arise among the readers of different domains

because one term can be interpreted differently in diverse fields. The description of important

terms are given below:-

1. Safety Critical Embedded System: An embedded system that could cause human

casualty / death on its failure / malfunctioning can be classified as safety critical

embedded system. The typical examples are embedded systems frequently used in health

care, space and automotive domains. However, there are diverse classifications of safety

critical embedded systems. For example, car power window can be considered as safety

critical embedded system because its malfunctioning may result in human casualty /

death e.g. broken arm etc. The key characteristics of Safety critical embedded system is

its functional and timing accuracy.

2. Verification: The process to ensure that system has been developed as per design

specifications and / or requirements.

3. Validation: The process to ensure whether developed system meet the user operational

needs and / or requirements.

4. Design: A specification of an object, manifested by an agent, intended to accomplish

goals, in a particular environment, using a set of primitive components, satisfying a set of

requirements, subject to constraints [62].

5. Development: Unite scientific and technical knowledge to meet particular goals.

6. Testing: It is the process to evaluate the quality of the service / system.

7. Maintenance: The ability of the system / service to accommodate future changes for

technological improvements, fault correction and to enhance operational capabilities.

8. Change Management: An approach comprises proactive change adaptation for

controlling organizational, product and system level changes.

9. Time-to-market: It is a length of time from a product being conceived until its being

available for sale (Wikipedia).

10. Design Complexity: The degree of complexity involve in the design of the system under

development.

11. MDA: Model Driven Architecture (MDA) is software development approach where

requirements are specified in models. It is initiated by OMG group in 2001.

http://en.wikipedia.org/wiki/Object_%28philosophy%29
http://en.wikipedia.org/wiki/Agency_%28philosophy%29
http://en.wikipedia.org/wiki/Goal
http://en.wikipedia.org/wiki/Environment_%28systems%29
http://en.wikipedia.org/wiki/Requirement

SRS for MODEVES Project, NSTIP, Saudi Arabia

12. MBSE: Model Based System Engineering (MBSE) is a systematic approach of

modeling to support requirement specification, design, verification and validation phases

of system development.

13. Behavioral aspect: The feature that requires the accuracy of both functional and timing

characteristics simultaneously.

14. Temporal aspects: The features those are expressed in terms of time. For example,

completion of some process on regular, specific and periodic time periods etc.

15. UML: Unified Modeling Language (UML) is OMG standard to develop models from

given specifications. These models are further used for the development of system

through various software engineering approaches.

16. SYSML: System Modeling Language (SYSML) is UML profile which is frequently used

in the development process of various systems by providing specification, design,

verification and validation support.

17. MARTE: Modeling and Analysis of Real-Time and Embedded Systems (MARTE) is a

UML profile designed to support model driven development of embedded / real time

systems.

18. Model Transformation: It is MBSE technique to transform one model type into another

model type. It takes input model and transforms it to desired output model. It is

frequently used in formal model verification and source code generation phases of

MBSE.

19. Single-Click: It is a mechanism to complete the given operation /function on single

mouse click

20. Code Generation: It is the process of generating source code of desired programming /

hardware language from the given models.

21. Early Design Verification: It is the process of verifying design of the system which is

defined in the given models. Normally, formal verification techniques have been used to

verify the behavioral / temporal aspects of the system. Therefore, it doesn’t require any

source code evaluation and execution for the verification of system design. That’s why it

is named as early design verification. However, dynamic verification (simulation) is also

considered to be the part of early design verification.

SRS for MODEVES Project, NSTIP, Saudi Arabia

22. Simulation: It is the process to validate the design of the system by simulating it through

generated source code. It is often named as dynamic verification of design in embedded

systems domain.

23. PSL: Properties specification language (PSL) is frequently used in hardware designs to

specify properties / assertions

24. Model: It is general-purpose term, however, in this document; model may refer to the

design of safety-critical embedded system containing all structural and behavioral /

temporal aspects which is developed using UML/SYSML/MARTE diagrams and

notations.

25. Meta model: It is defined as model of model. It is frequently used in model

transformation to produce the desired output model

26. Tight coupling: System is tightly coupled if there is high level of dependency among its

different components i.e. changing one component should require corresponding changes

in other component.

27. Constraint: It imposes certain restrictions on system / design under consideration.

28. User-friendliness: It can be defined as “The system functions should easily be operated

and learned by end-user”. For example, it is very easy for end user to develop models and

generate the desired source code on single-click.

29. Flexible: It can be defined as the ability of system to accommodate potential changes

required to attain operational diversity.

30. Notation: It is referred as UML graphical notations used in various diagrams.

31. SVA: System Verilog Assertions (SVA) are frequently used to verify the behavioral

aspects of the system through simulation of generated source code.

32. End-user: The classifications of potential users those have direct interaction with the

developed system. There may be a single user or set of users to perform modeling,

verification, code generation and simulation operations through developed system.

33. Platform: It provides dedicated operating environment for all system components so that

end-user should be capable of using all system components through it.

SRS for MODEVES Project, NSTIP, Saudi Arabia

34. Modeling Editor: The editor with UML/SYSML/MARTE diagrams / notations support

so that end-user should be able to develop appropriate models according to given

methodology.

35. XMI: XML Metadata Interchange (XMI) is OMG standard and frequently used to

exchange UML based models through XML.

36. Time Constraints: The constraints that impose certain time restrictions on the system

under consideration.

37. Safety Constraints: The constraints that impose certain restrictions to ensure the safety

of the system under consideration.

38. Rule-Based: The procedure based on predefined rules.

39. Formal Verification: The verification mechanism based on formal mathematical

methods to prove the satisfaction of behavioral aspects defined in formal specification.

40. Model Verification: It is the method to verify the behavioral / temporal aspects of

system those are specify in the given model.

41. Finite States: Measureable behavioral states of the given system / model.

42. Infinite States: The behavioral states of the given system / model those are

immeasurable.

43. Simulation variables: The variables use to control the simulation behavior to ensure the

correctness of given system / model.

44. Waveform: It is simulation technique frequently used to simulate the design / model of

safety critical embedded systems.

45. Lag: It is a visible delay encounter in the system components during the execution of

their operations / functions.

SRS for MODEVES Project, NSTIP, Saudi Arabia

1 Introduction

1.1 Purpose

This document provides a complete description of all the functional and nonfunctional

requirements of project “MOdel-based DEsign & Verification for Safety-Critical Embedded

Systems (MODEVES)”. The purpose of the project is to verify and validate the design of safety-

critical embedded systems through MDE approach. In this regard, this document incorporates all

functional, non-functional and other requirements that facilitate all project stake holders to

understand the intention of project. This is core document that will be used by all stake holders

(e.g., Higher management, Project manager, System analysts, developers, QA engineers and

Technical writers etc.) to perform various activities throughout the project lifecycle (e.g., Design,

Development, Testing, Maintenance and Change Management etc.).

1.2 Scope

The objective of this project to reduce time-to-market and design complexity of safety-critical

embedded systems by using MDE approach. Following are the major components of project:-

 Specify structural, behavioral and temporal aspects of safety-critical embedded systems

in UML/SYSML/MARTE diagrams according to new methodology that will be

developed as a part of MODEVES Framework. Furthermore, a novel approach will be

developed to specify the design verification properties / constraints of the system, by

means of SystemVerilog Assertions (SVA’s), at abstraction level (UML-based model).

This leads to specify the complete system design (structure & behavior) and its

verification requirements in UML-based model that can be used for early design

verification. Consequently, the gap between system design and its verification has been

reduced significantly.

 Model Transformation component will be developed to perform Model-to-Model (M2M)

and / or Model-to-Text (M2T) transformations, such that, SystemVerilog RTL

(synthesizable) and assertions code can be generated through model.

SRS for MODEVES Project, NSTIP, Saudi Arabia

 This leads to perform dynamic verification (simulation) of safety-critical embedded

systems design by using generated SystemVerilog RTL and assertions code through

existing UVM (Universal Verification Methodology) compliance simulator of choice.

 All components are integrated into a single MODEVES framework so that end-user will

be able to perform different operations like modeling, code generation and simulation

through single platform.

1.3 Intended Audience and Reading Suggestions

The document is intended for all project stake holders. This includes but not limited to:

 Chief Executive

 Project Director

 Joint Director (Operation)

 Joint Director (Technical)

 Project Managers

 Systems Analysts

 Quality Assurance Engineers

 Technical Writers

 Industrial Practitioners (for feedback)

 Educational Institutions (for feedback)

Furthermore, this document is publically available so that students, researchers and

engineers can get the potential benefits of tools and techniques proposed in this project for

safety-critical embedded systems.

2 General Description

Model Based System Engineering (MBSE) is a well-known approach for the development of

complex systems. It has features to reduce development complexity, enhanced productivity,

efficient change management and improved time-to-market. Therefore, it has been frequently

researched and customized for the development of embedded systems [11-12][18-19][21-23].

The major MBSE activities for the development of embedded systems are shown in Figure 1.

SRS for MODEVES Project, NSTIP, Saudi Arabia

Modeling structural and temporal aspects of embedded systems is foremost activity. All

other MBSE tasks (i.e. model transformation, verification and validation) are based on the it.

Therefore, models are developed by taking into consideration the model transformation,

verification and simulation requirements. For example, one of the major challenge is to model

behavioral / temporal aspects of complex embedded systems for further verification and

validation [12][34].

Correction (if required)

Modeling

Requirements

UML SYSML MARTE

Model Transformation

M2M M2T

Verification

Code

Generation

Simulation

Figure 1: Major MBSE Activities for Embedded Systems

UML and its SYSML/MARTE profiles are frequently used in contemporary research

practices [1-20] to specify embedded systems requirements. Furthermore, different properties

specification techniques / languages have been proposed by researchers [31-32][55-57] to model

behavioral / temporal aspects. Once requirements are modeled, different model transformation

techniques have been applied to develop platform specific model and / or source code

generation. Two types of transformations are commonly used i.e. Model-to-Model (M2M)

transformation [2-3] and Model-to-Text (M2T) transformation [17-18].

The verification is performed to ensure the correctness of the model / system and it is

tightly coupled with the modeling technique used to specify behavioral / temporal aspects.

Various formal verification techniques [47-49] have been used to verify the behavioral /

temporal aspects of the system. If the model does not satisfy the verification requirements, then

SRS for MODEVES Project, NSTIP, Saudi Arabia

corrections have been made in the model as shown in Figure 1. The validation of the model /

system has been performed through simulation. Model transformation is frequently performed to

produce the desired source code from the model which is used for simulation in order to validate

the model / system.

Although, researchers put a lot of efforts in the field of MBSE for embedded systems, it

is still a challenging area due to the diversity of behavioral / temporal characteristics of

embedded systems. It is always difficult to select appropriate modeling techniques and UML

profiles to model embedded systems requirements. Moreover, there is a considerable dependency

among different MBSE activities (i.e. modeling, model transformation, verification and

simulation) that require sufficient knowledge of all the phases for the development of embedded

systems. Similarly, there are separate toolsets for each MBSE activity and selection of

appropriate tools for embedded system development is always problematic for researchers and

practitioners.

 Keeping in view the current state of affair, this project introduces novel MODEVES

framework comprises various tools and techniques to support all MBSE activities for variety of

safety-critical embedded systems. The major project features are:

 Specify structural, behavioral and temporal aspects of safety-critical embedded systems

in UML/SYSML/MARTE diagrams according to intended modeling methodology.

Furthermore, a novel approach will be developed to specify the design verification

properties / constraints of the system, by means of SystemVerilog Assertions (SVA’s), at

abstraction level (UML-based model). This leads to specify the complete system design

(structure & behavior) and its verification requirements in UML-based model that can be

used for early design verification. Consequently, the gap between system design and its

verification has been reduced significantly.

 As a part of MODEVES framework, model transformation engine will by developed by

practicing Model-to-Model and / or Model-to-Text transformations. Consequently,

SystemVerilog RTL (synthesizable) and assertions code can be generated through model.

 This leads to perform dynamic verification (simulation) of safety-critical embedded

systems design by using generated SystemVerilog RTL and assertions code through

existing UVM (Universal Verification Methodology) compliance simulator of choice.

SRS for MODEVES Project, NSTIP, Saudi Arabia

 All components are integrated into a single MODEVES framework so that end-user will

be able to perform different operations like modeling, code generation and simulation

through single platform.

2.1 Product perspective

Limitations of Modeling Embedded Systems Requirements: From the literature review [1-

61], it has been analyzed that modeling activity is the core of MBSE approach because all other

activities (i.e. model transformation, verification and simulation) are tightly coupled with this

activity. Therefore, embedded systems requirements are modeled by considering various

important verification and validation aspects. UML and its SYSML/MARTE profiles are

frequently used in different combinations to specify structural and behavior aspects. However,

there are certain issues while integrating UML and its SYSML/MARTE profiles [30][34].

Another big challenge is to select the appropriate property specification approach while

specifying diverse properties and constraints of embedded systems.

 MODEVES Modeling Solution: The solution of above mentioned limitations has been

provided in MODEVES project as follows:

1. The modeling methodology will be developed, based on UML/SYSML/MARTE profiles,

in order to specify structural, behavioral and temporal aspects of embedded systems. All

issues pertaining to the integration of UML and its SYSML / MARTE profiles will be

handled properly.

2. The modeling methodology will be developed, based on OCL/CCSL, in order to specify

the complex assertions / properties of embedded systems for early design verification.

3. The both methodologies will facilitate practitioners and researchers to specify the

requirements of various embedded systems without dealing with the certain limitations.

Limitations of Model transformation: From the literature review, it has been analyzed that

model transformation approach needs to be frequently customized while dealing with different

types of embedded systems. For example, single transformation solution cannot be applied to the

models of two different embedded systems due the difference in modeling methodologies. In

SRS for MODEVES Project, NSTIP, Saudi Arabia

addition, end-user need to deal with various model transformation complexity like correctness of

model transformation.

 MODEVES Model Transformation Solution: Once model will be developed according

to the guidelines of MODEVES modeling methodology, MODEVES model

transformation component will be used to generate System Verilog RTL and Assertions

code for dynamic verification. The key features of MODEVES model transformation

component are as follows:

1. It will take XMI file and generate complete SystemVerilog RTL (synthesizable) and

assertion code as specified in the model. It will be able to generate SystemVerilog code

of any model as far as it is developed using MODEVES modeling methodology.

Otherwise it will give error that model is incompatible with MODEVES modeling

methodology. Consequently, there is no need to put additional transformation efforts for

different models because single generic MODEVES modeling methodology will be used.

2. All transformation complexities will be hidden from end user to support user-friendliness.

Limitations of Simulation: Dynamic verification of the system is performed through simulation

by making use of the generated source code. Researchers usually utilize available simulation

tools for the validation of the system [4][25]. However, some researchers develop their own

simulation mechanism / tool for validation [1]. Consequently, the most important activity of

simulation is the selection or development of appropriate simulation tool because different

simulation mechanism / tool are required for the simulation of source code of different

languages. Another important aspect of the simulation activity is the knowledge of simulation

environment / variable to perform accurate simulation. This normally requires specifying some

simulation information within the developed models. Finally, it can be concluded that simulation

of the model is highly dependent on the type of automatically generated executable source code.

 MODEVES Simulation Solution: We intend to perform dynamic verification through

simulation by using SystemVerilog RTL and assertions code generated through model

transformation component. As SystemVerilog is fully compliance with different

verification standard like UVM, Existing UVM compliance simulator of choice can be

utilized. Following are the key features of MODEVES simulation solution

SRS for MODEVES Project, NSTIP, Saudi Arabia

1. As UVM is emerging standard and supported by various simulator, there is no need to

develop any particular simulation solution and design verification can be performed in

any available simulator of choice.

2. The advance feature of the simulator can be utilized to analyze the cause of error (if any)

and re-verify the design after taking corrective measures.

2.2 Product functions

The major project features are given below:-

 Development of user-friendly and flexible methodology to model diverse structural and

behavioral / temporal aspects for variety of safety-critical embedded systems. This

methodology will be based on UML/SYSML/MARTE notations. Moreover, another

methodology will also be developed to specify assertions / constraints of embedded

systems which is based on OCL / CCSL. Furthermore, the proposed modeling

methodology will be supported by open source modeling editor to simply the modeling

activity.

 As a part of MODEVES framework, model transformation engine will by developed by

practicing Model-to-Model and / or Model-to-Text transformations. Consequently,

SystemVerilog RTL (synthesizable) and assertions code can be generated through model.

 This leads to perform dynamic verification (simulation) of safety-critical embedded

systems design by using generated SystemVerilog RTL and assertions code through

existing UVM (Universal Verification Methodology) compliance simulator of choice.

 All components are integrated into a single MODEVES framework so that end-user will

be able to perform different operations like modeling, code generation and simulation

through single platform.

2.3 General constraints

As far as end-user involvement is concerned, this product will be divided into four major

components (i.e. model, model transformation, code generation and dynamic verification). For

modeling, user should have some background of UML/SYSML/ MARTE diagrams and

notations. Furthermore, user should follow proposed guidelines which will be given as a separate

SRS for MODEVES Project, NSTIP, Saudi Arabia

document to specify structural / behavioral aspects of safety-critical embedded system in model.

The user can develop model in modeling editor included in MODEVES framework or it can use

any modeling editor compliance with the guidelines of MODEVES modeling methodology. The

model must be exported in XMI format for model transformation. The users should be familiar

with the working guidelines of transformation engine which will be provide in as separate help

file (e.g. user manual / installation manual etc.). For simulation, user should have some

background of safety-critical embedded systems simulation terminologies e.g., waveform etc.

2.4 Assumptions and Dependency

It is assumed that user which is involved in modeling process should be familiar with

UML/SYSML/MARTE diagrams and notations. Similarly, user involved in the dynamic

verification should be familiar with simulation terminologies e.g., waveform etc. The major

dependency is that the model must be developed according to the guidelines of MODEVES

modeling methodology.

3 Functional Requirements

3.1 Modeling Environment

Component
Name

Modeling Environment

Overview

This component will be responsible to specify wide-ranging

structural, behavioral and temporal aspects of safety-critical

embedded systems through UML/SYSML/MARTE diagrams and

notations. Furthermore, it is also responsible to specify the

assertions / constraints in the model. This component will be

completed in two steps. Firstly, a complete methodology will be

developed which will be used to specify structural, behavioral and

temporal aspects along with assertions / constraints of embedded

systems in the models. Secondly, a modeling editor will be provided

in MODEVES framework to develop models for safety-critical

SRS for MODEVES Project, NSTIP, Saudi Arabia

embedded systems according to given methodology.

No

Basic Function

Break down
Description

Critic
ality ID Sub

functionality

1.

Methodology
development

Methodology will be

developed that

define guidelines for

modeling structural,

behavioral and

temporal aspects

through

UML/SYSML/MART

E diagrams and

notations.

Furthermore, it also

define the guidelines

to specify assertions

/ constraints in the

model. This is

foremost functional

requirement of the

project. The

developed

methodology will be

available as a PDF

document.

1.1 Structural
aspects

This sub functionality will

provide mechanism for the

specification of structural

aspects in models through

UML/SYSML/MARTE diagrams

and notations. The important

requirements are:

 Identification of UML and / or

SYSML and / or MARTE

diagrams used to model

structural aspects of system

 Identification of simple

notations used to specify

complex structural aspects

in models.

 Identification of diagrams /

notations to represent

relationships between

different structural

components.

Must
have

1.2 Behavioral
and
temporal
aspects

This sub functionality will

provide mechanism for the

specification of behavioral and

temporal aspects in models

through UML/SYSML/MARTE

diagrams and notations. The

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

important requirements are:

 Identification of UML and / or

SYSML and / or MARTE

diagrams used to model

behavioral and temporal

aspects of system.

 Identification of simple

notations used to specify

complex behavioral and

temporal aspects in models.

 Identification of diagrams /

notations to represent

relationships and

dependencies between

different behavioral and

temporal aspects.

 Development of meta-model

(Profile) by using identified

diagrams and notations.

 Validate the applicability of

developed meta-model

(profile) through case

studies.

1.3 Assertions /
Constraints

This sub functionality will

provide mechanism to specify

verification properties /

constraints of the design in the

model. The important

requirements are:

 Logical representation of

SystemVerilog

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

constraints in the model

through modeling

standards like OCL /

CCSL

 Both immediate and

concurrent

SystemVerilog

assertions will be

considered for logical

representation

 Validate the applicability

of proposed assertions /

constraints specification

approach

1.4 Documentati
on

After the completion of early

Requirements (1.1, 1.2 and

1.3), a comprehensive

document will be developed to

facilitate the end-users for

modeling requirements. The

important requirements are:

 The document will

provide comprehensive

description for the

development of models

as defined in sub

requirements 1.1, 1.2

and 1.3.

 The document will be

simple and easy to

follow.

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

2

Modeling Editor

Modeling editor will
be provided so that
user will be able to
develop models
according to given
methodology
(requirement 1)

2.1 Modeling
editor with
UML/SYSML/
MARTE
support

The modeling editor will be

provided to support the

proposed methodology

(requirement 1). This will

enable end-users to develop

models according to given

methodology. However, it is

worth-mentioning here that

end-user can use any modeling

editor that will provide

UML/SYSML/MARTE support

and “export to XMI” facility. The

only requirement is to model

the requirements according to

given methodology

(requirement 1). We will

provide modeling editor with

following requirements :

 Support

UML/SYSML/MARTE

diagrams and notations

as defined in given

methodology

(Requirement 1).

 Drag and drop facility to

ease the modeling

process.

 Facility to export the

developed models in

XMI format.

 Support various

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

3.2 Model Transformation

abstraction levels of

model structure.

 Single-click mechanism

to display the help /

guide regarding

modeling methodology

(Requirement 1).

2.1 Integration
of Modeling
Editor

The modeling editor will be

integrated into MODEVES

framework. This integration has

following requirements:

 The modeling editor will

be seamlessly integrated

into MODEVES

framework.

 Single-Click mechanism

will be provided to

invoke the modeling

editor

May
have

Component
Name

Model Transformation

Overview

This component will be responsible to perform model

transformations on give models that are specified according to given

methodology. It will take the models in XMI format and perform

model transformations according to requirements. It will support

Model-to-Model and / or Model-to-Text transformations. These

SRS for MODEVES Project, NSTIP, Saudi Arabia

transformations are required to generate SystemVerilog RTL and

assertions code for dynamic verification (simulation).

No

Basic Function

Break down
Description

Critic
ality ID Sub

functionality

1.

Model
Transformation

Support model-to-

model and / or

model-to-text

transformations to

facilitate the Code

generator

component to

generate System

Verilog RTL and

Assertions code

from the model.

1.1 Model
Transformati
on Engine

The fully functional Model

Transformation Engine capable

of supporting M2M and / or

M2T transformations will be

developed. End-user will not

have any direct interaction with

it. However, it is used by code

generator component in order

to generate SystemVerilog

code from the given models.

The important functions are:

 Facility to parse XMI file for

desired model

transformation

 Support Mode-to-Model and

/ or Model-to-Text

transformation to meet

project requirements.

Must
have

1.2 Transformati
on Verifier

This sub component is

responsible to verify the

correctness of model

transformation performed by

transformation engine. The

major functions are:

 Verify the correctness of

Model-to-Model

May
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

3.3 Code Generator

Transformation

 Verify the correctness of

Model-to-Text

transformation.

 Seamless integration of

transformation verifier

into Transformation

engine.

1.3 Integration
of Model
Transformati
on
Component
into
MODEVES
framework

The complete Model

transformation Engine will be

integrated into MODEVES

framework. The key integration

requirements are:

 Seamless integration in

MODEVES framework.

 Immediate response to

MODEVES framework

(including causes) in case of

any transformation failure.

Must
have

Component
Name

Model Transformation

Overview

This component will be responsible to generate SystemVerilog RTL

and assertions code by using Model transformation component.

Single-Click mechanism will be provided to generate SystemVerilog

source code from given model. Furthermore, graphical code editor

may also be provided so that end-user can view / edit generated

SRS for MODEVES Project, NSTIP, Saudi Arabia

source code.

No

Basic Function

Break down
Description

Critic
ality ID Sub

functionality

1.

Code Generator

This component will

be responsible to

generate source

code from given

model.

1.1 Code
Generator
Engine

The fully functional code

generator engine capable of

generating SystemVerilog RTL

and assertions code will be

developed. End-user will be

able to generate SystemVerilog

code on a single click. The

important functions are:

 It will incorporate generic

templates those will be used

to generate System Verilog

code.

 It will be able to use model

transformation component

to generate System Verilog

code.

 It will support user-defined

directory structures where

files of generated source

code will be placed.

 It will provide partial support

to automatically incorporate

simulation variables in

generated System Verilog

code.

 It will provide partial support

to generate documentation

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

(comments and help files)

along withSystem Verilog

code.

1.2

Graphical
code editor

The graphical code editor will

be responsible to display

generated source code files to

end-user for further

optimization / customization.

The key functions are:

 It will display all generated

source code files in widget.

 It will support single / multi

view functionality to display

source code files.

 It will provide text

highlighting conventions to

show up errors, classes,

functions and assertions in

source code files.

 It will provide facility so that

end-user will be able to edit

/ customize source code

files and save them in any

desired location.

May
have

1.3 Integration
of Source
Code
Generator
Component
into
MODEVES
framework

The source code generator

component will be integrated

into MODEVES framework.

The key integration

requirements are:

 Seamless integration so that

May
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

3.4 Simulator

end-user will be able to

generate System Verilog

code through Single-Click.

 Provide simple mechanism

to invoke graphical code

editor.

Component
Name

Simulator

Overview

This component will be responsible to perform dynamic verification

of given model through simulation by using generate SystemVerilog

code. It is expected that we will utilized existing UVM compliance

simulator to save development time. Furthermore, it will also provide

flexibility to the user to use any UVM compliance simulator of

choice. However, selected simulator must provide sophisticated

simulation facilities (e.g. waveform etc.) to validate the design of

safety-critical embedded systems.

No

Basic Function

Break down
Description

Critic
ality ID Sub

functionality

1.

Simulation

This component will

be responsible to

perform validation of

given model through

simulation using

generate

SystemVerilog code.

1.1 Simulator The fully functional UVM

compliance simulator, capable

of performing intensive

assertion based verification of

safety-critical embedded

system design, will be

provided. The simulator will

provide complete support for

SystemVerilog Assertions. The

selected simulator should have

Must
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

3.5 MODEVES Framework

following functions:

 It will provide complete

System Verilog Assertions

support.

 It will be able to load the

generated System Verilog

code automatically from

user-defined location.

 It will support sophisticated

features required for the

validation of safety-critical

embedded systems design

like waveform etc.

1.2 Integration
of Simulator
into
MODEVES
Framework

The simulator component will

be integrated into MODEVES

framework. The key integration

requirements are:

 Seamless integration so that

end-user will be able to

invoke simulator on single

click.

 Simulator will be able to

load generated System

Verilog code automatically

and start simulation

accordingly.

May
have

Component
Name

MODEVES Framework

SRS for MODEVES Project, NSTIP, Saudi Arabia

Overview

This component will act as a container and will be responsible to

integrate all project components so that end-user will be able to

perform any or all (modeling, code generation and simulation)

activities through it. Furthermore, it also incorporates complete

security mechanism to impose various restrictions depending upon

users privileges. However, we propose it as an optional feature of

project due to limited time-span.

No

Basic Function

Break down
Description

Critic
ality ID Sub

functionality

1.

MODEVES
framework

All project

components will be

integrated in

MODEVES

framework

1.1 Integration
of all project
components

MODEVES framework will be

responsible to seamless

integrate all project

components so that end-user

will be able to use them

through single user-friendly

platform. The important

functions are:

 It will integrate modeling

editor and provide help

document regarding

modeling methodology.

 It will integrate Model

transformation component

so that code generator

component will be able to

seamlessly use it.

 It will integrate code

generator component to

provide single click System

Verilog source code

May
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

generation facility.

Furthermore, source code

editing facilities are also

integrated.

 It will integrate simulator

component.

1.2 Security This sub component will be

responsible to provide security

mechanism for accessing

various project components.

The important functions are:

 It will provide graphical

interface to create users and

their corresponding

categories.

 It will provide graphical

interface to define user

privileges for each category.

 It will provide logging

interface.

 It will incorporate complete

mechanism to allow / restrict

users to perform project

activities as per defined

privileges.

May
have

SRS for MODEVES Project, NSTIP, Saudi Arabia

4 Non-Functional Requirements

4.1 Performance

 All Project components should work fast enough so that “lag” will never be detected

4.2 Reliability

 The code generator component should generate System Verilog RTL and assertions code

with 90% accuracy

4.3 Availability

 All project components should be available to end-user as far as MODEVES framework

is open. In case of any error, the component should automatically resume itself within 30

seconds.

4.4 Security

 The users should be able to use different MODEVES framework components according

to pre-defined privileges.

4.5 Maintainability

 The transformation component should be able to accommodate future changes to

incorporate other transformation approaches

4.6 Portability

 The MODEVES framework should support both Windows and Linux platforms.

SRS for MODEVES Project, NSTIP, Saudi Arabia

References

 [1] Giuseppe Di Guglielmo, Luigi Di Guglielmo, Andreas Foltinek,, Masahiro Fujita, Franco

Fummi, Cristina Marconcini and Graziano Pravadelli: On the integration of model-

driven design and dynamic assertion-based verification for embedded software,

Journal of Systems and Software, Volume 86, Issue 8, August 2013, Pages 2013–2033.

DOI: 10.1016/j.jss.2012.08.061

[2] George-Dimitrios Kapos, Vassilis Dalakas, Anargyros Tsadimas, Mara Nikolaidou

and Dimosthenis Anagnostopoulos: Model-based system engineering using SysML:

Deriving executable simulation models with QVT, 8th Annual IEEE Systems

Conference (SysCon) 2014, Pages 531-538. DOI: 10.1109/SysCon.2014.6819307
[3] Samir Berrani, Ahmed Hammad, and Hassan Mountassir: Mapping SysML to

Modelica to Validate Wireless Sensor Networks Non-Functional Requirements, 11th

International Symposium on Programming and Systems (ISPS) 2013, Pages 177-

186. DOI: 10.1109/ISPS.2013.6581484

[4] Takashi Sakairi, Eldad Palachi, Chaim Cohen, Yoichi Hatsutori, Junya Shimizu, and

Hisashi Miyashita: Designing a control system using SysML and Simulink,

Proceedings of SICE Annual Conference 2012, Pages 2011-2017.

[5] Stancescu,S. Neagoe, L. ; Marinescu, R. ; Enoiu, E.P.: A SysML model for code

correction and detection systems, Proceedings of 33rd International Convention MIPRO

2010, Pages 189-191.

[6] Anargyros Tsadimas, George-Dimitrios Kapos, Vassilis Dalakas, Mara Nikolaidou and

Dimosthenis Anagnostopoulos: Integrating simulation capabilities into SysML for

enterprise information system design, 9th International Conference on System of Systems

Engineering (SOSE) 2014, Pages 272-277. DOI: 10.1109/SYSOSE.2014.6892500

[7] Samir Ouchani, Otmane Aıt Mohamed and Mourad Debbabi: A Formal Verification

Framework for BlueSpec System Verilog, Forum on Specification and Design

Languages (FDL) 2013, Pages 1-7.

[8] Fabrice Bouquet, Jean-Marie Gauthier, Ahmed Hammad and Fabien Peureux:

Transformation of SysML Structure Diagrams to VHDL-AMS, Second Workshop on

Design, Control and Software Implementation for Distributed MEMS (dMEMS) 2012,

Pages 74-81, DOI: 10.1109/dMEMS.2012.12

[9] Gianmaria DeTommasi, Riccardo Vitelli, Luca Boncagni, and André C. Neto: Modeling

of MARTe-Based Real-Time Applications With SysML, IEEE Transactions on

Industrial Informatics 2013, Volume 9, Issue 4, Pages 2407-2415, DOI:

10.1109/TII.2012.2235073

[10] Carlos Gomez, Julien DeAntoni and Frederic Mallet: Multi-View Power Modeling

based on UML MARTE and SysML, 38th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA) 2012, Pages 17-20, DOI:

10.1109/SEAA.2012.66

http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212/86/8
http://dx.doi.org/10.1109/SysCon.2014.6819307
http://dx.doi.org/10.1109/ISPS.2013.6581484
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Stancescu,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Neagoe,%20L..QT.&searchWithin=p_Author_Ids:37542539900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Marinescu,%20R..QT.&searchWithin=p_Author_Ids:37528208900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Enoiu,%20E.P..QT.&searchWithin=p_Author_Ids:37542536500&newsearch=true
http://dx.doi.org/10.1109/SYSOSE.2014.6892500
http://dx.doi.org/10.1109/dMEMS.2012.12
http://dx.doi.org/10.1109/TII.2012.2235073
http://dx.doi.org/10.1109/SEAA.2012.66

SRS for MODEVES Project, NSTIP, Saudi Arabia

[11] Ermeson Andrade, Paulo Maciel, Gustavo Callou and Bruno Nogueira: A Methodology

for Mapping SysML Activity Diagram to Time Petri Net for Requirement

Validation of Embedded Real-Time Systems with Energy Constraints, Third

International Conference on Digital Society ICDS 2009, Pages 266-271, DOI:

10.1109/ICDS.2009.19

[12] Imran R. Quadri, Etienne Brosse, Ian Gray, Nicholas Matragkas, Leandro Soares

Indrusiak, Matteo Rossi, Alessandra Bagnato and Andrey Sadovykh: MADES FP7 EU

Project: Effective High Level SysML/MARTE Methodology for Real-Time and

Embedded Avionics Systems, 7th International Workshop Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC) 2012, Pages 1-8, DOI:

10.1109/ReCoSoC.2012.6322882

[13] Grzegorz Bazydlo, Marian Adamski and Lukasz Stefanowicz: Translation UML

diagrams into Verilog, 7th International Conference on Human System Interactions

(HSI) 2014, Pages 267-271, DOI: 10.1109/HSI.2014.6860487

[14] Michal Doligalski and Marian Adamski: UML state machine implementation in FPGA

devices by means of dual model and Verilog Translation UML diagrams into

Verilog, 11th International Conference on Industrial Informatics (INDIN) 2013, Pages

177-184, DOI: 10.1109/INDIN.2013.6622878

[15] Wolfgang Mueller, Da He, Fabian Mischkalla Arthur Wegele, Paul Whiston, Pablo Penil

and Eugenio Villar: The SATURN Approach to SysML-based HW/SW Codesign,

IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2010, Pages 506-511,

DOI: 10.1109/ISVLSI.2010.95

[16] Sergio H. M. Durand and Vanderlei Bonato: A tool to support Bluespec System

Verilog coding based on UML diagrams, IEEE 38th Annual Conference on Industrial

Electronics IECON 2012, Pages 4670-4675, DOI: 10.1109/IECON.2012.6389493

[17] Stephen K. Wood, David H. Akehurst, Oleg Uzenkov, W. Gareth J. Howells, and Klaus

D. McDonald-Maier: A Model-Driven Development Approach to Mapping UML

State Diagrams to Synthesizable VHDL, IEEE Transactions on Computers 2008,

Volume 57, Issue 10, Pages 1357-1371, DOI: 10.1109/TC.2008.123

[18] Tomas G. Moreira, Marco A. Wehrmeister, Carlos E. Pereira, Jean-Francois Petin and

Eric Levrat: Automatic Code Generation for Embedded Systems: From UML

Specifications to VHDL Code, IEEE 8th International Conference on Industrial

Informatics (INDIN) 2010, Pages 1085-1090, DOI: 10.1109/INDIN.2010.5549590

[19] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard and Jean-Philippe

Diguet: A co-design approach for embedded system modeling and code generation

with UML and MARTE, Conference and Exhibition Design Automation and Test in

Europe (DATE) 2009, Pages 226-231, DOI: 10.1109/DATE.2009.5090662

[20] Eamonn Linehan and Siobhan Clarke: An aspect-oriented, model-driven approach to

functional hardware verification, Journal of Systems Architecture, Elsevier 2012,

Volume 58, Issue 5, Pages 195-208, DOI: 10.1016/j.sysarc.2011.02.001

[21] Fernando Herrera , Hector Posadas, Pablo Penil, Eugenio Villar, Francisco Ferrero, Raul

Valencia and Gianluca Palermo: The COMPLEX methodology for UML/MARTE

http://dx.doi.org/10.1109/ICDS.2009.19
http://dx.doi.org/10.1109/ReCoSoC.2012.6322882
http://dx.doi.org/10.1109/HSI.2014.6860487
http://dx.doi.org/10.1109/INDIN.2013.6622878
http://dx.doi.org/10.1109/ISVLSI.2010.95
http://dx.doi.org/10.1109/IECON.2012.6389493
http://dx.doi.org/10.1109/TC.2008.123
http://dx.doi.org/10.1109/INDIN.2010.5549590
http://dx.doi.org/10.1109/DATE.2009.5090662

SRS for MODEVES Project, NSTIP, Saudi Arabia

Modeling and design space exploration of embedded systems, Journal of Systems

Architecture, Elsevier 2014, Volume 60, Issue 1, Pages 55-78, DOI:

10.1016/j.sysarc.2013.10.003

[22] Stephane Lecomte, Samuel Guillouard, Christophe Moy, Pierre Leray and Philippe

Soulard : A codesign methodology based on model driven architecture for real time

embedded systems, Mathematical and Computer Modelling, Elsevier 2011, Volume 53,

Issue 3-4, Pages 471-484, DOI: 10.1016/j.mcm.2010.03.035

[23] Imran Rafiq Quadri, Abdoulaye Gamatie, Pierre Boulet, Samy Meftali and Jean-Luc

Dekeyser: Expressing embedded systems configurations at high abstraction levels

with UML MARTE profile: Advantages, limitations and alternatives, Journal of

Systems Architecture, Elsevier 2012, Volume 58, Issue 5, Pages 178-194, DOI:

10.1016/j.sysarc.2012.01.001

[24] DeJiu Chen, Lei Feng, Tahir Naseer Qureshi, Henrik Lonn and Frank Hagl : An

architectural approach to the analysis, verification and validation of software

intensive embedded systems, Computing, SPRINGER 2013, Volume 95, Issue 8, Pages

649-688, DOI: 10.1007/s00607-013-0314-4

[25] Yves Vanderperren, Wolfgang Mueller and Wim Dehaene: UML for electronic systems

design: a comprehensive overview, Design Automation for Embedded Systems,

SPRINGER 2008, Volume 12, Issue 4, Pages 261-292, DOI: 10.1007/s10617-008-9028-9

[26] Majdi Elhaji, Pierre Boulet, Abdelkrim Zitouni, Samy Meftali, Jean-Luc Dekeyser and

Rached Tourki: System level modeling methodology of NoC design from UML-

MARTE to VHDL, Design Automation for Embedded Systems, SPRINGER 2012,

Volume 16, Issue 4, Pages 161-187, DOI: 10.1007/s10617-012-9101-2

[27] Elvinia Riccobene and Patrizia Scandurra: Integrating the SysML and the SystemC-

UML profiles in a model-driven embedded system design flow, Design Automation

for Embedded Systems, SPRINGER 2012, Volume 16, Issue 3, Pages 53-91, DOI:

10.1007/s10617-012-9097-7

[28] P. Penil, J. Medina, H. Posadas and E. Villar: Generating heterogeneous executable

specifications in SystemC from UML/MARTE models, Innovations in Systems and

Software Engineering, SPRINGER 2010, Volume 6, Issue 1-2, Pages 65-71, DOI:

10.1007/s11334-009-0105-4

[29] Muhammad Zohaib Iqbal, Andrea Arcuri and Lionel Briand: Environment modeling

and simulation for automated testing of soft real-time embedded software, Software

and System Modeling, SPRINGER 2013, DOI: 10.1007/s10270-013-0328-6

[30] Huascar Espinoza, Daniela Cancila, Bran Selic and Sebastien Gerard: Challenges in

Combining SysML and MARTE for Model-Based Design of Embedded Systems,

LNCS SPRINGER 2009, Volume 5562, Page 98-113 DOI: 10.1007/978-3-642-02674-

4_8

[31] Ling Yin, Jing Liu, Zuohua Ding ; Mallet, F., de Simone, R.: Schedulability Analysis

with CCSL Specifications, 20th Asia-Pacific Software Engineering Conference

(APSEC) 2013, Pages 414-421 DOI: 10.1109/APSEC.2013.62

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ling%20Yin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jing%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zuohua%20Ding.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mallet,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.de%20Simone,%20R..QT.&newsearch=true
http://dx.doi.org/10.1109/APSEC.2013.62

SRS for MODEVES Project, NSTIP, Saudi Arabia

[32] Frederic Mallet: Automatic Generation of Observers from MARTE / CCSL, 23rd

IEEE Symposium on Rapid System Prototyping (RSP) 2012, Pages 86-92

DOI: 10.1109/RSP.2012.6380695

[33] Samir Chouali and Ahmed Hammad: Formal verification of components assembly

based on SysML and interface automata, Innovations in Systems and Software

Engineering, SPRINGER 2011, Volume 7, Issue 4, Pages 265-274 DOI: 10.1007/s11334-

011-0170-3

[34] Milena Rota Sena Marques, Eliane Siegert and Lisane Brisolara: Integrating UML,

MARTE and SysML to improve requirements specification and traceability in the

embedded domain, 12th IEEE International Conference on Industrial Informatics

(INDIN) 2014, Pages 176-181 DOI: 10.1109/INDIN.2014.6945504

[35] Frederic Mallet, Jean-Vivien Millo and Robert de Simone: Safe CCSL specifications

and Marked Graphs, 11th IEEE / ACM International Formal Methods and Models for

Codesign (MEMOCODE) 2013, Pages 157-166

[36] Naiyong Jin, Chengjie shen, Jun chen and Taoyong Ni: Engineering of An Assertion-

based PSLSimple-Verilog Dynamic Verifier by Alternating Automata, Electronics

Notes in Theoretical Computer Science 2008, Volume 207, Pages 153-169 DOI:

10.1016/j.entcs.2008.03.091

[37] Joel Greenyer and Ekkart Kindler: Comparing relational model transformation

technologies: implementing Query/View/Transformation with Triple Graph

Grammars, Software & Systems Modeling, SPRINGER 2010, Volume 9, Issue 1, Pages

21-46 DOI: 10.1007/s10270-009-0121-8

[38] Jong-Won Ko, Kyung-Yong Chung and Jung-Soo Han: Model transformation

verification using similarity and graph comparison algorithm, Multimedia tools and

applications, SPRINGER 2013, DOI: 10.1007/s11042-013-1581-y

[39] Roy Gronmo, Birger Moller-Pedersen and Goran K. Olsen: Comparison of Three

Model Transformation Languages, Model Driven Architecture – Foundation and

applications, SPRINGER 2009, Volume 5562, Pages 2-17 DOI: 10.1007/978-3-642-

02674-4_2

[40] Peter Feher and Laszlo Lengyel: The challenges of a model transformation language,

IEEE 19th International Conference and Workshops on Engineering of Computer Based

Systems (ECBS) 2012, Pages 324-329 DOI: 10.1109/ecbs.2012.6487443

[41] Esther Guerra, Juan de Lara, Dimitris Kolovos and Richard Paige: A Visual

Specification Language for Model-to-Model Transformations, IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC) 2010, Pages 119-126 DOI:

10.1109/VLHCC.2010.25

[42] Louis M. Rose, Nicholas Matragkas, Dimitrios S. Kolovos and Richard F. Paige: A

Feature Model for Model-to-Text Transformation Languages, ICSE Workshop on

Modeling in Software Engineering (MISE) 2012, Pages 57-63 DOI:

10.1109/MISE.2012.6226015

http://dx.doi.org/10.1109/RSP.2012.6380695
http://dx.doi.org/10.1109/INDIN.2014.6945504
http://dx.doi.org/10.1016/j.entcs.2008.03.091
http://dx.doi.org/10.1109/ecbs.2012.6487443
http://dx.doi.org/10.1109/VLHCC.2010.25
http://dx.doi.org/10.1109/MISE.2012.6226015

SRS for MODEVES Project, NSTIP, Saudi Arabia

[43] Anderson Ledo, Franklin Ramalho and Nata Melo: MetaTT – A Metamodel Based

Approach for Writing Textual Transformations, 6th Brazilian Symposium on

Software Components Architectures and Reuse (SBCARS) 2012, Pages 61-70 DOI:

10.1109/SBCARS.2012.21

[44] Dionisio Doering: A Model Driven Engineering Methodology for Embedded System

Designs - HIPAO2, 12th IEEE International Conference on Industrial Informatics

(INDIN) 2014Pages 787-790 DOI: 10.1109/INDIN.2014.6945614

[45] Juan de Lara and Esther Guerra: Towards the flexible reuse of model transformations:

A formal approach based on graph transformation, Journal of Logical and Algebraic

Methods in Programming 2014, Volume 83, Issues 5-6, Pages 427-458 DOI:

10.1016/j.jlamp.2014.08.005

[46] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya and P. Van Gorp: Evaluation of

model transformation approaches for model refactoring, Science of Computer

Programming 2014, Volume 85, Part A, Pages 5-40 DOI: 10.1016/j.scico.2013.07.013

[47] Tuomas Launiainen, Keijo Heljanko and Tommi Junttila: Efficient Model Checking of

PSL Safety Properties, 10th International Conference on Application of Concurrency to

System Design (ACSD) 2010, Pages 95-104 DOI: 10.1109/ACSD.2010.27

[48] Meng Zhang, Deyuan Gao and Xiaoya Fan: Formal Verification of Mixed-signal

Circuits using Extended PSL, 8th International Conference on ASIC 2009, Pages 1288-

1293 DOI: 10.1109/ASICON.2009.5351231

[49] B.N. Uchevler and Kjetil Svarstad: Assertion Based Verification Using PSL-like

Properties In Haskell, 16th International Symposium on Design and Diagnostics of

Electronic Circuits & Systems (DDECS) 2013, Pages 254-257 DOI:

10.1109/DDECS.2013.6549828

[50] Veronica Andrea Bollati, Juan Manuel Vara, Alvaro Jimenez and Esperanza Marcos:

Applying MDE to the (semi-)automatic development of model transformations,

Information and Software Technology 2013, Volume 55, Issue 4, Pages 699-718 DOI:

10.1016/j.infsof.2012.11.004

[51] Adrian Rutle, Alessandro Rossini, Yngve Lamo and Uwe Wolter: A formal approach to

the specification and transformation of constraints in MDE, The Journal of Logic and

Algebraic Programming 2012, Volume 81, Issue 4, Pages 422-457 DOI:

10.1016/j.jlap.2012.03.006

[52] Samir Ouchani, Otmane Ait Mohamed and Mourad Debbabi: A formal verification

framework for SysML activity diagrams, Experts Systems with Applications 2014,

Pages 2713-2728.

[53] Luciane Telinski Wiedermann anger, Inali Wisniewski Soares and Paulo Cezar Stadzisz:

A Brazilian survey on UML and model-driven practices for embedded software

development, The Journal of systems and software 2013, Pages 997-1005

[54] Bijan Alizadeh and Payman Behnam: Formal equivalence verification and debugging

techniques with auto-correction mechanism for RTL designs, Microprocessors and

Microsystems 2013, Pages 1108-1121

http://dx.doi.org/10.1109/SBCARS.2012.21
http://dx.doi.org/10.1109/INDIN.2014.6945614
http://dx.doi.org/10.1016/j.jlamp.2014.08.005
http://dx.doi.org/10.1016/j.scico.2013.07.013
http://dx.doi.org/10.1109/ACSD.2010.27
http://dx.doi.org/10.1109/ASICON.2009.5351231
http://dx.doi.org/10.1109/DDECS.2013.6549828
http://dx.doi.org/10.1016/j.infsof.2012.11.004
http://dx.doi.org/10.1016/j.jlap.2012.03.006

SRS for MODEVES Project, NSTIP, Saudi Arabia

[55] Daniel Knorreck and Ludovic Apvrille: TEPE: A SysML Language for Time-

Constrained Property Modeling and Formal Verification, ACM SIGSOFT Software

Engineering Notes 2011, Volume 36, Issue 1, Pages 1-8 DOI: 10.1145/1921532.1921556

[56] Ning Ge, Marc Pantel and Xavier Cregut: Formal Specification and Verification of

Task Time Constraints for Real-Time Systems, LNCS SPRINGER 2012, Volume

7610, Pages 143-157 DOI: 10.1007/978-3-642-34032-1_16

[57] Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand and Bran Selic: Extending SysML

with AADL Concepts for Comprehensive System Architecture Modeling, LNCS

SPRINGER 2011, Volume 6698, Pages 236-252 DOI: 10.1007/978-3-642-21470-7_17

[58] Luciano Baresi, Gundula Blohm, Dimitrios S. Kolovos, Nicholas Matragkas, Alfredo

Motta, Richard F. Paige, Alek Radjenovic and Matteo Rossi: Formal verification and

validation of embedded systems: the UML-based MADES approach, Software and

Systems Modeling SPRINGER 2013, DOI: 10.1007/s10270-013-0330-z

[59] Xiaopu Huang, Qingqing Sun, Jiangwei Li, Minxue Pan and Tian Zhang: An MDE-

Based Approach to the Verification of SysML State Machine Diagram, Proceedings

of the Fourth Asia-Pacific Symposium on Internetware Software, Article 9, ACM 2012,

DOI: 10.1145/2430475.2430484

[60] Minh Chau Nguyen, Eunkyoung Jee, Jinho Choi and Doo-Hwan Bae: Automatic

Construction of Timing Diagrams from UML/MARTE Models for Real-Time

Embedded Software, Proceedings of the 29th Annual ACM Symposium 2014, Pages

1140-1145, DOI: 10.1145/2554850.2555011

[61] Erwan Bousse, David Mentre, Benoit Combemale, Benoit Baudry and Takaya Katsuragi:

Aligning SysML with the B Method to Provide V&V for Systems Engineering,

Proceedings of the Workshop on Model-Driven Engineering, Verification and Validation,

ACM 2012, Pages 11-16, DOI: 10.1145/2427376.2427379

[62] Definition of design, Last accessed March 2015. http://en.wikipedia.org/wiki/Design

[63] Time to Market, Last accessed March 2015. http://en.wikipedia.org/wiki/Time_to_market

http://dx.doi.org/10.1145/1921532.1921556
http://dx.doi.org/10.1145/2430475.2430484
http://dx.doi.org/10.1145/2554850.2555011
http://dx.doi.org/10.1145/2427376.2427379
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Time_to_market

